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Nose-wheel landing gears can, under certain conditions, exhibit instability in lateral dynamics, causing divergent
coupled lateral flexural and torsional oscillations called shimmy. The stability of the system depends on the dynamic
characteristics of the gear and tires, nonlinearities in the system, and vibratory modes of the vehicle as a whole, as well
as the degree of coupling that exists between them. Shimmy may be caused by a number of conditions such as low
torsional stiffness of the strut, free play in the gear, wheel imbalance, or worn parts. Free play in the steering degree of
freedom has the potential to significantly reduce the divergent shimmy velocity. Nonlinear behavior of landing gear
makes the evaluation of the shimmy phenomenon more complex and its prediction more difficult. This work presents
a study of the shimmy instability of a three-degree-of-freedom simplified nose-wheel landing gear model with linear
flexible tire model and nonlinearities arising out of torsional free play. Response results are presented for a typical
range of values of various problem parameters. Numerical studies bring out several interesting features of the

shimmy and its dependence on free play.

Nomenclature

Cg = equivalent lateral damping coefficient of the nose-wheel
landing gear strut

Cg, = additional viscous damping (shimmy damping) in the
torsional degree of freedom

C, = lateral damping of the tire

Cy = equivalent structural damping coefficient in the torsional
degree of freedom

Fy = side force due to lateral flexibility of the tire

K lateral stiffness of the nose-wheel landing gear

K, = lateral stiffness of the tire

Ky torsional stiffness of the nose-wheel landing gear

1 = moment of inertia of wheel-strut assembly about the gear
vertical axis

L = distance of axis of wheel rotation from the gear vertical
axis

L., = distance of the center of gravity of the wheel-strut
assembly from the gear vertical axis

m = mass of the wheel-strut assembly

t = dimensional time

% landing gear forward velocity

Voo = critical shimmy velocity

Vi, = tire contact point velocity

y = lateral displacement of the strut

A lateral displacement of the tire

0 rotation of the wheel about the gear vertical axis

O free play in wheel the torsional degree of freedom

T nondimensional time

Q = ratio of nose-wheel landing gear strut torsional frequency

to lateral bending frequency, wy/w,

Received 13 November 2006; revision received 8 May 2007; accepted for
publication 5 June 2007. Copyright © 2007 by the American Institute of
Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper
may be made for personal or internal use, on condition that the copier pay the
$10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 0021-8669/07 $10.00 in
correspondence with the CCC.

*Scientist, National Control Law Team, Integrated Flight Control Systems
Directorate.

Professor (Retired), Aerospace Engineering Department.

1991

®, = uncoupled nose-wheel landing gear strut lateral bending
frequency

wy = uncoupled nose-wheel landing gear strut torsional
frequency

I. Introduction

OSE-WHEEL landing gears (NLGs) can, under certain

conditions, exhibit instability in lateral dynamics, causing
divergent coupled lateral flexural and torsional oscillations called
shimmy. The stability of the landing gear system depends on the
dynamic characteristics of the gear, tires, and vibratory modes of the
vehicle as a whole, as well as the degree of coupling that exists
between various modes of these components. Shimmy may be
caused by a number of conditions such as low torsional stiffness of
the strut, free play in the gear, wheel imbalance, or worn parts.
Landing gears that shimmy are unacceptable, and in fact, a severe
occurrence of shimmy can damage the landing gear and its attaching
structure, resulting in significant damage. At speeds close to critical
(shimmy) velocity, small motions may become unstable and grow,
and in severe cases, the pilot may not able to take corrective action,
leading to the failure of the gear. It is therefore necessary that landing
gear designs ensure adequate margins between the taxi speeds and
the critical velocity of shimmy under all operating conditions. This
has made analysis for the prediction of NLG shimmy, a necessary
component in the aircraft landing gear design.

Nonlinear behavior of landing gear makes the evaluation of the
shimmy phenomenon more complex and its prediction more
difficult. It is necessary to incorporate appropriate models for landing
gear nonlinearities to obtain accurate estimates of the critical velocity
of shimmy. When there are nonlinearities, the NLG system may
exhibit limit-cycle oscillations, which under certain conditions may
induce large-amplitude responses. Such large responses are also
loosely referred to as shimmy, though the NLG system may still be
exhibiting stable limit-cycle oscillations. The common nonlinearities
encountered in landing gears are dry friction between sliding
surfaces, nonlinear tire stiffness and damping, and free play in the
torsional degree of freedom (DOF). The most significant of these
nonlinearities is free play, which has the potential to significantly
reduce the divergent shimmy velocity.

The effect of free play has been addressed by the present authors in
a number of earlier studies [1-5]. These studies show that NLG
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exhibits limit-cycle oscillations even at velocities below divergent
shimmy, and the amplitudes of limit-cycle oscillations increase with
increase in free play and when the velocity approaches the value of
divergent shimmy. Torsional free play tends to destabilize the
landing gear, whereas the friction force dissipates energy and thus
increases the landing gear stability. Coulomb friction acts opposite to
the local relative velocity. However, the torsional friction force
generated by the bearings may be reduced to almost zero when the
shock absorber stroking velocities are relatively high. The nonlinear
flexibility effects of tire and velocity-dependent friction force due to
lateral tire slippage with respect to the ground also play an important
role on shimmy stability. Further, free play and damping are the only
parameters that provide some scope for control in the NLG dynamics
at the testing and operational phases of the aircraft. This paper
presents a study of shimmy instability of a simplified 3-DOF NLG
model with nonlinearities arising out of free play in the torsional
DOF.

There have been several studies [6—14] available on modeling and
analysis of landing gear nonlinearities, in particular, torsional free
play and friction in the system. Nonlinear analysis of landing gear for
the study of shimmy has been presented by Krabacher [6,7] using
two mathematical models accounting for torsional free play and
coulomb friction. Critical nonlinear parametric coefficients in the
models have been given by indicating the sensitivity of these
parameters to numerical variation. His studies identified free play as
one of the stability critical parameters. A nonlinear model of nose
landing gear of a typical fighter aircraft has been presented by
Baumann [8]. The landing gear model includes inertia, coulomb and
viscous damping, stiffness, and torsional free play. Li [9] presented
modeling and analysis of NLG shimmy in which the landing gear
model includes nonlinearities arising from free play and nonlinear
damping in steering system, dry friction between the piston and
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cylinder, and spring-hardening effects of the bending and torsional
stiffness. Gordon Jr. [10] presented an asymptotic method involving
the multiple-time-scale perturbation technique for nonlinear stability
analysis of NLG shimmy models with velocity-squared damper and
obtained general expressions for the limit-cycle amplitude. A
perturbation analysis of nonlinear wheel shimmy with coulomb
friction and free play has been presented by Gordon Jr. [11]. His
studies showed that when only coulomb friction is present, an
unstable limit-cycle exists; when only free play is present, a stable
limit cycle exists; and when both the nonlinearities are present, both
stable and unstable limit cycles exist.

In all the preceding studies [6—11], results have been limited to
specific cases of NLG represented by specific values of problem
parameters. Because nonlinearities such as free play are highly
dependent on wear, it is necessary to examine the potential for
occurrence of shimmy for a range of possible values of the system
parameters. Limit cycles of simple nonlinear NLG models have been
studied by Somieski [12] using various solution techniques. A
complete set of nonlinear equations of unsteady tire dynamics of the
wheel has been developed by Koenig [13]. It has been demonstrated
that reasonable shimmy analyses are possible with these equations.
The influence of some of the coefficients responsible for the
nonlinearity in the equations has revealed the necessity of adequate
tire tests. Woerner and Noel [14] also observed that the effect of free
play and friction on shimmy stability is significant.

The problem of analyzing a wheeled system for shimmy also
requires the knowledge of various system components, tire
characteristics, and how the forces of contact at the road surface are
transmitted to the wheel. Valid mathematical relationships
describing the force-deflection characteristics of the tire must be
used to predict the onset of shimmy correctly. Most studies available
on landing gear dynamics models consider either Moreland’s point-
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¢) Rack-and-pinion steering
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d) Three-degree-of-freedom nose-wheel landing gear lateral dynamics model

Fig. 1 Schematic representation of typical aircraft nose-wheel landing gear and its three-degree-of-freedom lateral dynamics model
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contact model or von Schlippe’s stretched-string model [15-19]. In
this study, a lateral-tire-dynamics model based on Moreland’s point-
contact theory is used.

II. Analytical Formulation of Simplified
NLG Lateral Dynamics

Figure la shows a typical NLG configuration [20] and Fig. 1b
shows a schematic representation of the same as a cantilever
supported from the fuselage. The flexibility of the cantilever landing
gear may cause fore and aft motion in the x direction and lateral
motion in the y direction. The vertical motion in the z direction is
absorbed by the oleopneumatic shock absorber. Landing gear may
also rotate about the fore and aft axis (x axis) because of lateral
bending. The wheel is free to swivel about the vertical axis when the
steering is not engaged. This DOF helps with steering the aircraft.
The steering moment is transferred to the wheels using a rack-and-
pinion mechanism through a torque link. The steering is assumed to
be hydraulically controlled and incorporated with two spring-loaded
hydraulic steering cylinders that serve as a steering mechanism and
are also used as a shimmy damper to subdue torsional oscillations
automatically. Damping is accomplished in the shimmy damper by
the metering of hydraulic fluid through a small orifice between two
cylinders. In the present study, the NLG is assumed to be equipped
with such a damping mechanism. A schematic of such a steering
mechanism is shown in Fig. 1c.

The NLG model considered for the present paper accounts for
structural inertia, stiffness, and structural damping. The torsional
stiffness of the strut is the resultant of stiffness offered by torque link,
hydraulic spring in the steering actuator, and the structure above the
torque link, including the retraction jack. The damping in the system
is a contribution of the inherent structural damping in lateral and
torsional DOF (Cy and Cy) and external viscous damping (Cygy,) in
torsional DOF coming from the steering damping mechanism. The
net damping produced by the shimmy damper is taken into account
here as an effective viscous damping in parallel with the overall
spring stiffness. In the aircraft taxiing phase, cyclic loading
conditions encountered by the landing gear because of the runway
and other excitations may lead to the wear and tear in some of the
mechanical components of the landing gear system. These include
mechanical plays (free play) in the rack and pinion of the steering
system, interlinkages of the torque link, and fuselage attachment
joints and lateral plays in the steering collar and wheel axle. In this
study, free play in the steering DOF is considered for the purpose of
modeling the nonlinear torsional stiffness of the NLG strut. Other
landing gear nonlinearities such as nonlinear lateral strut flexibility,
friction in the oleostrut, and nonlinear tire behavior are ignored.

Consider an NLG model with 3-DOF, as shown in Fig. 1d, which
has a rigid swiveling member of length L attached to a nonswiveling
structure. Let m be the mass of the wheel-strut assembly, let / be the
moment of inertia of the wheel-strut assembly about the gear vertical
axis, and let L, be the distance of the center of gravity of the wheel-
strut assembly from the gear vertical axis. The dynamics of the NLG
system is formulated in terms of equilibrium along its lateral degrees
of freedom (i.e., lateral motion y of the wheel assembly), swivel
rotation (torsional DOF) of the wheel about the vertical axis 6, and
lateral deflection of the tire contact patch with respect to the wheel
center plane A. Considering free play in torsion and assuming 6 to be

small (cos @ = 1 and sin @ = 6), the equations of motion for the 3-
DOF NLG system [2,4] can be written as
d’y d’0 dy
d?6 d?y de
I@‘*"”chﬁ‘f‘ (Co+ CSh)a‘f’Me +FyL=0 (2

where K and Cg, respectively, are stiffness and equivalent structural
damping of the NLG strut in the lateral direction; Cy and Cyg, are,
respectively, equivalent structural damping and additional viscous
damping (shimmy damping) in the torsional degree of freedom; and

M, is the torsional moment that can be expressed in terms of strut
torsional stiffness Ky, wheel swivel rotation 6, and free play in wheel
swivel DOF 0, as

My=0 —0p, <0 <6,
My = Ky(0 — 6) 0> 6, (3)
My=Ky(0+06,)  0<—6

In Egs. (1) and (2), Fy represents the side force generated by the
tire lateral deformation. Linear mathematical relationships
describing the force-deflection characteristics of the tire (based on
Moreland’s model) are considered for the dynamic tire model. It is
assumed that the tire is laterally flexible and torsionally rigid. Also,
the side force Fy acting on the wheel is proportional to the deflection
A and to the rate of change of A with time and can be expressed in
terms of tire lateral stiffness K, and damping C, as

dA
FN=KAA+CA— (4)
dr
If the force Fy is strong enough to resist lateral force due to strut
lateral dynamics, then there will not be any slippage of tire with
respect to the ground. Here, it is assumed that there is no tire slip with
respect to the ground. The kinematic condition that ensures no tire
slip with respect to the ground (i.e., V; = 0) is given by
dy do dA
VO+—+L———=0 5
+ dr + dr dt ©)
Equations (1), (2), and (5) along with Egs. (3) and (4) represent the
nonlinear lateral dynamics of 3-DOF NLG with free play in the
steering DOF. Defining w} = (Kg/m) and w} = (K,/I) and the
following nondimensional parameters,

_ 0y - A - ch - I
=—, A:—, L:—, ]:—, =t
YTL L L mL? TS
-V _ - C
=2 y=""_ k=2 =8
wg wgL mws mwyg
o :& o = C@ é = CSh 1/ :ﬂ
mwg mL*wg’ St L2 mL*w}
(6)

Equations (1), (2), and (5) can be written in nondimensional form as
J4+LO4+Csy+ 5+ KaA+CoA=0 ©)

Ly+I16+(Cy+ Cs)0+My+ KA+ CaA=0 (8

J+60+VO—A=0 ©)

Equations (7) and (8) represent nonlinear lateral dynamics of 3-
DOF NLG with free play in the steering DOF in a nondimensional
form. In the preceding equations, single and double dots over the
quantities represent first and second derivatives with respect to the
nondimensional time parameter t.

III. Numerical Results and Discussion

Solution of the complex nonlinear NLG system dynamics requires
numerical integration of the system equations using suitable
algorithms. It can be seen from the literature [21-24] that for the
dynamics of nonlinear structural systems, the Newmark-$ and the
Runge—Kutta methods are the most widely used. In this study, the
Newmark-f8 integration scheme is employed to integrate the
preceding nonlinear system equations. By solving the incremental
equilibrium equation using the local tangent stiffness (treating the
nonlinear term as a pseudoforce), solution of the system nonlinear
equations for NLG dynamics is obtained. A comprehensive
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Table 1 Values of NLG parameters for 3-DOF baseline problem and their ranges

Baseline values of NLG parameters

Strut inertia parameters
Strut geometric parameters
Strut stiffness parameters
Strut damping parameters
Tire parameters

m =22 kg and I, = 0.198 kgm’
L =0.075 m, L, = 0.0675 m, and 6, = 0
Kg =542.83 kN/mand Q = 3
Cs =0.01, Cy = 0.02, and Cg, = 50 Nms/rad
K, =238.75 kN/m and C, =205 Ns/m

Range of values of NLG parameters

Forward velocity
Shimmy damping
Torsional free play

V = 10-350 kmph
Cg, = 50-200 Nms/rad
O = £5x 107~ £ 3 x 1072 rad

Table 2 Damping and frequency at various values of velocity V obtained for different time steps dt

Newmark-f
dr =0.001 dr =0.01 dr=0.1 Analytical Solution
Velocity V, kmph Damping Freq, Hz Damping Freq, Hz Damping Freq, Hz Damping Freq, Hz

110 —0.057 17.82 —0.059 17.81 —0.063 17.81 —0.050 17.82
120 —0.042 18.24 —0.044 18.24 —0.050 18.22 —0.041 18.24
125 —0.031 18.66 —0.033 18.66 —0.037 18.64 —0.031 18.66
135 —0.023 19.08 —0.023 19.08 —0.025 19.06 —0.022 19.08
145 —0.012 19.51 —-0.012 19.51 —-0.014 19.50 —0.012 19.51
155 —0.003 19.92 —0.003 19.92 —0.004 19.90 —0.003 19.92
165 0.008 20.34 0.008 20.34 0.009 20.33 0.008 20.34
175 0.020 20.75 0.020 20.75 0.020 20.74 0.019 20.75
185 0.031 21.16 0.031 21.16 0.032 21.15 0.030 21.16

description of this incremental equilibrium approach is available in
(21].

Starting with the initial condition y =0.02 and 6 = —0.02 and
setting all other displacements and their time derivatives equal to
zero, the equations are integrated and time responses of linear system
and nonlinear system with torsional free play are obtained for self-
excited oscillations in terms of y, 6, and A for various forward-
velocity values. By observing the linear and nonlinear system
responses, the effect of torsional free play on the NLG lateral
response is studied for the baseline and range-of-values problem
parameters given in Table 1.

The results presented in this paper correspond to a time step
dr = 0.01, which corresponds to ds < 6.5 x 1075 s. Table 2 presents
the results for damping (calculated based on the logarithmic
decrement of the response amplitude) and frequency values using
different integration time steps dz (nondimensional) and compared

y (m) —->

0 1

5 -2
Time (sec) —> Time (sec) —>
5
x10
5 : i ; :
A E E A ; I
i H H |
€ o -
<D ' '
5 i z <
5 : H
0 1 2 3

Time (sec) —> Time (sec) —>

a) Time responses at V=260kmph

2 3 2 25 3

with the values obtained from analytical solution (eigenvalue
solution of linear problem) for various values of forward velocity V
for the case /= 1.47, L =0.9, 0, =0, Cyg=Cg, = Cs =0, and
€ = 1/3. It can be seen from Table 2 that a time step of dt = 0.01
provides an accurate estimation.

For the linear system without torsional free play (base line
configuration), Fig. 2 shows time responses in terms of y, 6, and A
before (260 kmph) and after (270 kmph) the onset of instability
(shimmy). It is observed that the response is predominantly at the
coupled lateral-strut frequency for all velocities and the predominant
response is lateral displacement of the strut. The time responses
presented in Fig. 2 suggest the estimation of the effective damping in
the system based on the logarithmic decrement of the response
amplitude. Figure 3 shows the variation with forward velocity and
the effective damping for the linear NLG model without free play,
calculated based on the logarithmic decrement of the response

x10*
5 ' '
A .
E? E
> =
5 H H 5 H
0 1 2 3 2 25 3
Time (sec) —> Time (sec) —>
A
i A
€ £
g : i <
5
0 1 2 3

Time (sec) —> Time (sec) —>

b) Time responses at V=270kmph

Fig. 2 Time responses of y, 6, and A for the linear NLG system without free play (6, = 0) and with Cg;, = 50 Nms/rad.
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Fig. 3 Variation of effective damping at various velocities V for the
linear NLG system without free play (6y, =0) and with
Cs, = 50 Nms/rad.
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amplitude. It can be seen from Fig. 3 that the onset of instability
occurs when damping of the modal response becomes zero at critical
velocity V¢, = 265 kmph.

Figures 4a—4d show time responses of the nonlinear system with
free play in torsional DOF in terms of y, 6, and A at forward-velocity
values equal to 50, 100, 150, and 200 kmph for the case pr =+5x
10~ rad (£0.03 deg), and Fig. 4e shows phase plane plots of lateral
response y for the same (preceding) values of velocity V. It is
observed from Fig. 4 that torsional free play causes limit-cycle
oscillations with moderate amplitudes, even in the subcritical
velocity range of the corresponding linear system, but causes
divergent response beyond a critical velocity, which is much lower

-
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Time (sec) —> Time (sec) -——>

b) Time responses at V=100kmph
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d) Time responses at V=200kmph
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e) Time responses and phase plane plots of y at V=50, 100, 150, 200kmph

Fig. 4 Time responses of y, 6§, and A at various values of V for the case f;, =5 x 10~ rad and Cg;, = 50 Nms/rad.
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Fig. 5 Steady-state amplitude values of y, #, and A and lateral
acceleration at various velocities V for the system with free play
O =5x 10~*rad and shimmy damping Cg, =50 Nms/rad
(Ve =175 kmph).
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Fig. 6 Variation of effective damping at various velocities V for the
system with free play 6, =35 x 10~% rad and shimmy damping
Cs, = 50 Nms/rad.

than the critical velocity of the corresponding linear system. It can be
seen that

1) For velocities below a limiting value, the responses decay.

2) For arange of velocities, the response shows steady-state (limit-
cycle) oscillations.

3) Beyond a limiting value, the response diverges.

The limit cycles at V = 100 and 150 kmph can clearly be seen in
Fig. 4e.

Figure 5 shows the variation of response amplitudes for various
forward velocities. For the case of the current NLG configuration a
free-play value of 6, = £5 x 10~ rad in the steering DOF reduces
divergent shimmy to 175 from 265 kmph (the critical velocity of
instability corresponding to the linear system without free play). It is
seen that below 65 kmph, the response amplitude decays, and above
175 kmph, the response diverges. In the intermediate range of
velocity between 65 to 175 kmph, the system exhibits stable limit-
cycle oscillations. For the same case, the variation of effective
damping based on the logarithmic decrement of the response
amplitude and response frequency of the nonlinear NLG with free
play is shown in Fig. 6. A clearly identifiable limit-cycle zone is
observed over a range of velocities. The lower limit of this zone
represents the critical velocity of the system, below which the system
is always stable in the presence of free play. This value corresponds
to the critical velocity of an NLG system with the steering-free
condition (K, = 0). This is because when the response amplitude is
less than the value of free play, the torsional stiffness of the NLG
structure does not come into play. However, the tire lateral stiffness
does produce an effective resistance to NLG torsion (K 5 L?), and the
system displays a lower torsional frequency value equal to 10.68 Hz

>
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Fig. 7 Effect of torsional free play 6; on NLG strut lateral

acceleration: Variation of NLG lateral acceleration response with

forward velocity V for various values of 6y, and for shimmy damping

Cs, = 50 Nms/rad.
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Fig. 8 Qualitative comparison of NLG lateral acceleration response of
linear system without free play with corresponding nonlinear system
with free play.

(V[KaL?/4I7%). This can be observed from the plot in Fig. 6,
wherein the variation of response frequency with velocity is shown.

The upper limit of the limit-cycle zone gives the value of critical
velocity, beyond which the response diverges in the presence of free
play. This value depends on the amount of free play. This can be
observed in Fig. 7, in which the effect of various values of torsional
free play on lateral acceleration response at various velocities is
shown. It can also be observed that with increase in torsional free
play, peak lateral acceleration levels increases drastically, even in
subcritical ranges of velocity. It can be seen from Fig. 7 that increase
in the value of free play from 6, = +5 x 107 to £5 x 1073 rad
increases the peak lateral acceleration levels at the wheel hub from
0.12 to 1.25 g at velocity V = 150 kmph.

Figure § presents a summary of the preceding results showing a
qualitative comparison of the divergent shimmy condition for a
linear NLG system and the corresponding nonlinear system with free
play. The region of stable limit-cycle oscillations is also shown. It is
also seen that the amplitudes of limit-cycle oscillations increase with
increase in free play and when the velocity approaches the value of
divergent shimmy. Tight control of free play in the steering
mechanism can provide scope for keeping these large-amplitude
lateral responses at bay. All results presented here for finite free play
correspond to the steering-locked condition. When the free play
becomes very large, the steering is, in effect, free (with no torsional
stiffness). Hence, the divergence velocity for large free play tends to
the critical shimmy velocity for a steering-free condition.

Alleviation of large-amplitude responses caused by system
nonlinearities can sometimes also be achieved by providing enough
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Fig. 9 Effect of shimmy damping on NLG strut lateral acceleration
response: Variation of NLG lateral acceleration response with forward
velocity V for various values of shimmy damping Cg, for the system with
free play 6;, =5 x 10~* rad.

damping in steering DOF. Figure 9 shows the variation of NLG
lateral acceleration response with forward velocity for the case of
nonlinear system free play 60 =5 x 10~ rad for the shimmy
damping Cg, values 50, 100, 150, and 200 Nms/rad. It can be
observed from Fig. 9 that increase in the value of the shimmy
damping Cg, from 50 to 150 Nms/rad decreases the peak lateral
acceleration levels at the wheel hub from 0.12 to 0.001 g,
respectively, at 150 kmph.

IV. Conclusions

The study of the shimmy instability of a nonlinear NLG model
with linear flexible tire model and with torsional free play was
presented. Numerical integration based on the Newmark-f scheme
was used to obtain transient responses of the system. These time-
domain simulation studies showed that torsional free play causes
limit-cycle oscillations with moderate amplitudes, even in the
subcritical velocity range of corresponding linear system, but shows
divergent response beyond a critical velocity that is much lower than
the critical velocity of the linear system. Even small amounts of free
play could cause a significant reduction in the critical velocity. It is
observed that there could also be steady-state (stable limit-cycle)
oscillations of moderate amplitudes at subcritical velocities that
could reduce the margin available for operating velocities.

The preceding observations’ impact in practice, as a sudden onset
of shimmy instability in aircraft during operation and as wear and tear
in the joints and steering mechanism, gradually increases free play in
the NLG. In such situations, periodic monitoring and control of free
play is the only ready means available to ensure shimmy-free
operation.

Acknowledgments

The work presented here is included in the Ph.D. thesis [25] of the
first author and was carried out at the Indian Institute of Technology
Bombay, Mumbai, India, as a part of a research project funded by the
Aeronautical Development Agency, Bangalore, India. Valuable
discussions with the Structures Group of the Aeronautical
Development Agency and the Landing Gear Group of Hindustan
Aeronautics Limited, Bangalore are gratefully acknowledged.

References

[1] Sura, N. K., and Suryanarayan, S., “Dynamic Response and Stability
Studies on Simplified Models of Aircraft Landing Gears,” India-USA
Symposium on Emerging Trends in Vibration and Noise Engineering
[CD-ROM], The Ohio State Univ., Columbus, OH, 10-12 Dec. 2001,
Paper U0438.

[2] Sura, N. K., Suryanarayan, S., Dipak K. M., and Upadhya, A. R.,
“Stability and Response Studies on Non-Linear Models of Nose-Wheel

Landing Gears,” Proceedings of Aerospace and Related Mechanisms
2002, Vikram Sarabhai Space Center, Trivendrum, Kerala, India, 8—
9 Nov. 2002.

Sura, N. K., and Suryanarayan, S., “Stability and Response Studies on

Simplified Models of Nose-Wheel Landing Gear with Hard Tires,”

Journal of the Institution of Engineers (India), Vol. 85, May 2004,

pp- 29-36; also available online at http://www.ieindia.org/publish/as/

0504/may04as5.pdf.

Sura, N. K., and Suryanarayan, S., “Shimmy Studies on Non-Linear

Nose-Wheel Landing Gear Models,” International Conference on

Nonlinear Phenomena 2004 [CD-ROM], Indian Inst. of Science,

Bangalore, India, 5-10 Jan. 2004.

Sura, N. K., and Suryanarayan, S., “Nonlinear Lateral Dynamics of

Nose Wheel Landing Gears,” International Conference on Computa-

tional and Experimental Engineering and Sciences (ICCES), Indian

Inst. of Technology Madras, Chennai, India, 1-6 Dec. 2005,

Paper 0520051116053.

Krabacher, W. E., “A Review of Aircraft Landing Gear Dynamics,”

AGARD Rept. R-800, Mar. 1996.

Krabacher, W. E., “Comparison of the Moreland and Von Schlippe-

Dietrich Landing Gear Tire Shimmy Models,” Vehicle System

Dynamics, Vol. 27, Sept. 1997, pp. 335-338.

doi:10.1080/00423119708969667

Baumann, J., “A Non-Linear Model for Landing Gear Shimmy with

Applications to the McDonnell Douglas F/A-18A,” AGARD Rept. R-

800, Mar. 1996.

Li, G. X., “Modelling and Analysis of a Dual-Wheel Nose Gear:

Shimmy Instability and Impact Motions,” Proceedings of the SAE

Aerospace Atlantic Conference and Exposition, Society of Automotive

Engineers, Warrendale, PA, 20-23 Apr. 1993, pp. 129-143.

[10] Gordon, T. J., Jr., and Merchant, H. C., “An Asymptotic Method for
Predicting Amplitudes of Nonlinear Wheel Shimmy,” Journal of
Aircraft, Vol. 55, No. 3, Mar. 1978, pp. 155-159.

[11] Gordon, T.J., “Perturbation Analysis of Non-Linear Wheel Shimmy,”
Journal of Aircraft, Vol. 39, No. 2, 2002, pp. 305-317.

[12] Somieski, G., “Shimmy Analysis of a Simple Aircraft Nose Landing
Gear Model Using Different Mathematical Methods,” Aerospace
Science and Technology, Vol. 1, No. 8, Dec. 1997, pp. 545-555.
doi:10.1016/S1270-9638(97)90003-1

[13] Koenig, K., “Unsteady Tire-Dynamics and the Application Thereof to
Shimmy and Landing Load Computations,” AGARD Rept. R-800,
1996.

[14] Woerner, P., and Noel, 0., “Influence of Non-Linearity on the Shimmy
Behavior of Landing Gear,” AGARD Rept. R-800, 1996.

[15] Moreland, W. J., “The Story of Shimmy,” Journal of the Aeronautical
Sciences, Vol. 21, No. 12, 1954, pp. 793-808.

[16] Smiley, R. F., “Correlation, Evaluation, and Extension of Linearized
Theories for Tire Motion and Wheel Shimmy,” NACA TM-1299, 1956,
pp- 139-186.

[17] Krabacher, W. E., “Comparison of the Moreland and Von Schlippe-
Dietrich Landing Gear Tire Shimmy Models,” Vehicle System
Dynamics, Vol. 27, Sept. 1997, pp. 335-338.
doi:10.1080/00423119708969667

[18] Collins, R. L., “Theories on the Mechanics of Tires and Their
Applications to Shimmy Analysis,” Journal of Aircraft, Vol. 8, No. 4,
Apr. 1971, pp. 271-277.

[19] Collins, R. L., and Black, R. J., “Tire Parameters for Landing-Gear
Shimmy Studies,” Journal of Aircraft, Vol. 6, No. 3, May—June 1969,
pp. 252-258.

[20] Young, D.W., “Aircraft Landing Gears—The Past Present and Future,”
Society of Automotive Engineers, Paper 864752, July 1985.

[21] Bathe, K. J., Finite Element Procedures in Engineering Analysis,
Prentice-Hall, Englewood Cliffs, NJ, 1982.

[22] Berg Glen, V., Elements of Structural Dynamics, Prentice—Hall,
Englewood Cliffs, NJ, 1989.

[23] Weaver, W., Jr., and Johnston Paul, R., Structural Dynamics by Finite
Elements, Prentice—Hall, Englewood Cliffs, NJ, 1987.

[24] Xie, Y. M., “An Assessment of Time Integration Schemes for Non-
Linear Dynamic Equations,” Journal of Sound and Vibration, Vol. 192,
No. 1, 1996, pp. 321-331.
doi:10.1006/jsvi.1996.0190

[25] Sura, N. K., “Lateral Stability and Response of Nose Wheel Landing
Gears,” Ph.D. Dissertation, Aerospace Engineering Dept., Indian Inst.
of Technology, Bombay, Mumbai, India, Sept. 2004.

3

[t

[4

=

[5

[t}

[6

=

[7

—

[8

[t

[9

—



http://dx.doi.org/10.1080/00423119708969667
http://dx.doi.org/10.1016/S1270-9638(97)90003-1
http://dx.doi.org/10.1080/00423119708969667
http://dx.doi.org/10.1006/jsvi.1996.0190

